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An exact closed solution of the plane contact problem for a semi-infinite stamp is constructed for the case 

when the free boundary of the half-plane is under a load (problem l), or for an analytic solution, to any 

prescribed accuracy, of the problem of a finite stamp impressed into an elastic half-plane under the action of 

a central vertical force P (problem 2), or under the action of the above force P, a horizontal force T and a 

pair of forces with moment M (problem 3). In all three cases the region of contact consists of a zone of 

adhesion and fraction, and the stamp has a plane profile. 

THE USE of the zones of Coulomb friction in formulating the problem of impressing a stamp with 
incomplete adhesion into the medium was proposed in [l]. The conditions for the removal of stress 
singularities from the neighbourhood of the point of transition from the zone of slippage (taking 
kinetic friction into account) to separation into layers and from the adhesion of the slippage zone, 
were studied in [2] for the plane problem of a composite elastic plane. In order to enable the Irwin 
criterion to be applied to the problem of the delamination of heterogeneous materials, a segment 
was isolated in [3], within the slippage zone, on which shear stresses were specified. 

An approximate solution of problem 2 was constructed in [l] with the help of conformal mapping. 
The method was extended in [4] to the solution of the problem of impressing a stamp under the 
action of an eccentrically applied force. Below a different approach is proposed, based on reducing 
the above problems to a Riemann vector problem for one, two and three pairs of functions (for 
problem 1, 2 and 3, respectively), which are then solved using the method given in [5]. The 
boundaries of the adhesion and friction zones not known in advance are found, and formulas are 
derived for the contact stresses with explicitly isolated power singularities. Numerical examples are 
given. 

1. THE PROBLEM OF A SEMI-INFINITE STAMP 

Let us consider an elastic half-plane (0 < r < 03, - 7~ c 8 < 0)) whose Poisson’s ratio is v and whose 
modulus of elasticity is E. Stresses ue = fi (r), T fi =f2(r) are applied to part of the boundary of the 
half-plane (0 < r < 03, 8 = - IT). When 0 = 0, the half-plane is in contact with a semi-infinite stamp. 
The region of contact is separated into the adhesion zone (b <r< co): ue = 6,) u, = 6, (6,, 6, are the 
normal and tangential displacements of the stamp), and the Coulomb fiction zone (O<r< co): 
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TV - pa0 = 0, ue = 6, (k is the coefficient of friction). In the adhesion part the shear stresses are 
insufficient to cause slippage T* - kue < 0 (b < r < a, 0 = 0). The normal contact pressure under the 
stamp must be positive everywhere ue > 0 (0 < r < CC, 0 = 0). 

We will introduce a pair of unknown functions 

x (r ) = (%I3 - ClU&=ot 9 (r) = (1 + v)-’ EBu, / ilr l~=~, O<r<= 

with suppx(r) C [b, co), supp$(r)C [O, 61, and apply the Mellin transformation 

(1.1) 

to the equations of statics, the conditions of continuity and the physical equations. Then (the case of 
plane strain) 

Ue81v + 2 (9 + 1) Uei + (Sa - 1)’ Uer = 0, -X < 8 < 0, 

(S - 1) Ge8 = Ues’, s (s - 1) ‘l,, = v* [(l - v) ah” + 

+ (VS + 1 - V) (S - 1) UgJ 

(1.2) 

S (9 - 1) lle8 = V* [(l - V) Uearn + (29 - V.9 + 2VS -S + 1 - V) C&‘l 

(v* = (1 + v) E-l). 

Requiring that the solution of Eq. (1.2) must satisfy the boundary conditions 

[(S - I)-’ Uer’ - jJX7&jp0 = P+lQ+ (6) 

r(l - V) Uel -1 (VS + 1 - V) (S - 1) Uf&=o = S (S - 1) ZP+lO- (S) 

I(1 - V) Uesm + (29 - vs’d + 2vs - S + 1 - V) Ue8’lw = 0 

Ue8 18=--n = flsr Ue8’ 18=--n = (S - 1) fzr 

@+ (8) = T x (br) r* dr, @>- (s) = { $ (br) r8 dr, fj# = 1 fj (r) rs dr 
1 0 0 

we arrive at the Riemann problem 

@+ (s) = G (s) CD- (s) + g (s), s E I’: Re (s) = y. (1.3) 
G (s) = 4aos1 (s) sin ns (x+ cos as - px_ sin JCS), x* = 1/z (x & 1) 

g (s) = 4x+b-J-16o-’ (S) sin ZS [(x7 + cLx+ ctg nS) f,, + (ox- - x, ctg ns) faJ (1.4) 

x = 3 - 4v, 60 (s) = 1 + 2x co9 2ns + 9 

for the pair of functions a’(s) analytic in D': Re(s) syoE ( -E, 0) (0~ E < 1). Let US write the 
function G(s) in the form 

G (s) = xcr sin JCS sin 3t (CX - S) set s (s f is) SBC 3t (S - ifi) = K+ (s) K- (s) 

X - X, (X Siu. TCC%)-', pr- a = 3x-l arectg (px_x+-‘), g = (2n)_’ In x 
(1.5) 

K+ (S) = r (‘/n - “(1 @),r(z$’ + lb) 
r 

K-(s) = - 
X,r P/s + 8 + #) r P/a + 9 - 18) 

r(i+s)r(i-a++) 
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The functions K’ (s) are analytic and do not vanish in D ‘. 
The solution of problem (1.3) has the form 

a* (s) = K+ (s) \Y+ (s), cp- (s) = PC- (s)l-1 Y- (s) 

u'(s) = &jA!LL!L 
r 

K+(t) t-s 

Using the inverse Mellin transformation we obtain 

4J (r) = & s [K+(s) Y+(s)- g(s)] &(;)+‘cds, O<r<b 
r 

x (r) = -!- 
2ni s Jr+ (s) Y + (s) (+)--I--l ds, r > b 

we 194 = -& s (x_ sins nsP+Q, (s) - xta co9 arsfr, - x+x_ sin nsfr,) -$$ ds 

(1.6) 

(O<r<4 

Applying the method of residues and a Tauber-type theorem to relations (1.6), we obtain 

% 
I ar a=0 = 0 (r-a), uele=o=O(r-a), r-40, 

aur 
ar 1 e=o = x,r (a) 

v*yo(b) (i-g-‘, r-b-00; Y,(b)= & g,“; s 
x (r) - w, (b) [r (a)]-’ (F/b - I)-‘, r --t b + 0 (1.7) 

In order to solve the problem completely, we must find the position of the point b, unknown 
a priori. Let us introduce the stress intensity factor 

K (4 =rJ~o(r - b)14 (WI - w&o 

and require that K(b) = 0, i.e. that TV- kae = 0, T = b, 8 = 0. Then, as a result of (1.7), the 
position of point b will be given by the condition 

Y, (b) = 0 (1.8) 

Iiere the contact stresses r& and u0 will remain bounded in the neighbourhood of the point r = b. 
We note that (1.8) is equivalent to condition [l] for determining the length of the adhesion zone. In 
[2] the boundedness of the stresses at the point of transition from the Coulomb friction zone to 
adhesion is obtained in a different manner for the case of the problem of the contact of a half-plane 
with a single point at which the boundary conditions change. 

Let us evaluate the integral (1.7) and obtain a numerical formula for the contact stress cre in the 
case of the Flamant problem (Fig. 1). Let fi (r) = -P&(r- c), f2(r) = 0 (P = const). Then 

f ,a = --PC’, f,, = 0, g (8). = -43~+6~-’ (r) Pb-‘A-Of, (r), A = b/c 

6 (8) = px, cos IU + x_ sin a, V. (b) = --SC+ (m~b)-~Po (A) 

I 
Yw (b) = 2ni 

s 
r(-b) r(a-t)r -&+s+ip r ) (+- + 8 - ifJ) 6 (s) A-W 
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FIG. 1. 

We will evaluate the last integral using the theory of residues. We obtain 

0 (A) = (Rhcy” Re {(p - I) (h/4)% (z) rr (i + r&]-l x 

x F (a,, z; 2%; -h),O<h<l 

0 (A) - &‘*Y (a) F (q,, I,; 1 - a; --h-l) - x_ (p” + i) x 

x IPr (i + ~8~1-1 1 r (11 1 v (2, f; i + a; -4-q, h > i 

a = a + v, + rg, 20 = ‘/* + rg 

The quantity A is found from the equation w(A) = 0. Evaluating the integral (1.6) and considering 
the case of 0 < r< b and r> b, 0 < A < 1 as well as A > 1, we arrive at the following computational 
formulas for the contact stress: 

j=O m==O 

d(l) 
m 

d(2) 
m 

m,a+j+l- m+f+i 11 * r<b, I.>1 

%P 
Qel-= nx% 

~0s (B In (r/c)) 
rfc 

m+i+2zo +m+i+l 

Here 

(1.9) 

Formulas (1.9) yield the contact stress intensity factor 
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K& = lim raue (r, 0) 
r-r0 

x 
:Ko(X) = - 

I.% P sin* nabam1 

(nx)” r (4 -a) 
Re {c- 5) (+)@ r (,‘:“,,2 *z x 

-Ko (1) = f sin zc~c~-~ {H ~Ja-‘C1 I r (2 - 3 I’ F 1 

x4/lr(l_-a)r(2__a) c 
z 
Op * -a;-- 

~~‘o’ 2 

) 
+ 

+F(z-l,f-_;a;--1-l) , k>1 I 

2. L. A. GALIN’S PROBLEM (PROBLEM 2) 

Let a stamp (O<r<a, 0 = -T; O<r<a. 0 = 0) be impressed into the elastic half-plane (O<r< ~0, 
-IT < 8 < 0) under the action of a vertical force P applied at the point r = 0. The region of contact is 
split into the adhesion zone ue = 6,) u, = 6, (O<r<b, 0 = --7F;O<r<b, f3 = 0), and the Coulomb 
friction zone ue = 6,) T,+-~.u~ = 0 (b<r<a, 8 = -T); u,, = a,, ~~+p+ = 0 (b<r<a, 8 = 0). 
Outside the zone of contact the boundary of the half-plane is load-free. As in Sec. 1, the normal 
stresses must be positive within the region of contact, and shear stresses in the adhesion zone satisfy 
the inequality ) TV ( < p ) ue 1. 

Taking symmetry into account, we can reduce the problem formulated here to a problem for a 
quarter-plane: 

with the additional condition of equilibrium of the stamp 

(2.1) 

(2.2) 

Let us introduce into our discussion the unknown functions 

XI (r) = oe fry Oh x2 W = ‘C,CJ try 0) + Poe (r, 0) (2.3) 

Pl 09 = y*- Vu,ldr (r, 0), q2 (r) = v*-l duelcYr(r, 0) 

Then from the boundary conditions (2.1) we have suppxlC [0, a], suppxzC[O, b], 
supp+, C[b, ~1, supp~/~~C[a, ~1, and the function x1(r), by virtue of (2.2), must satisfy the 
condition 

a 

S X1(r)& =f (2.4) 
0 

Using the Mellin transformation (1.2) we reduce the problem formulated here to the following 
boundary value problem for Eq. (1.2): 
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Oes’ 18=-n/2 = 00,” le=-n/z = 0 

Old (s) = i x1 (ar) rs dr, D2’ (s) = 5 x2 (br) rs dr 
0 0 

0’1+ (s) = 1 *I (br) r’dr, cD~~((s) = 1 q2 (ar) r’dr 
(2.5) 

1 1 

Solving this problem we obtain the homogeneous Riemann problem 

h”+lQ,+ (s) = K, (s) 0,- (s) - x+as+1 tg l/,ns@,- (s) 

DZ+ (s) = K, (s) @,- (s) - x_h8+Q,,- (s), s E r 

K, (s) = x, ctg ll,ns + PX_, K, (s) = x_ + px+ tg ll,ns, 

h = b/a E (0, 1) 

(2.6) 

[the quantities x_ + are defined in (1.4)]. Deriving the expression for aI-(s) from the second 
equation of (2.6) and substituting it into the first equation, we obtain 

aI+ (s) = IK, (s)l-’ K1 (s) h-“Q2+ (s) + x,,g IK, (s)l-’ %- (s), 

X* = x-2 - x+2 

We now factorize the function K0 (s) = K,+ (s) KO- (s) 

Ko+ (s) = _ %Or (- d2) 
r(1-a-s/2) ’ 

Ko- (s) = r (1 + 4) 
r (a$ s/2) ’ x, = 

X+ 
sin (2.7) 

[CY is defined in (1.5)], and rewrite system (2.6) in a form suitable to use the method of [5] 

X* [K,- (s)]-’ Q,- (s) =. K,+ (s) al+ (s) - I.-‘-’ [K,- (s)l-‘K, (s) @,+ (s) 
(2.8) 

[K,+ (s)l-’ m2+ (s) = K,- (s) ml- (s) - x_A’+~ [K,+ (s)l-’ 0,’ (s) 

The function [KO- ($)I-’ K1 (s) is meromorphic in the region D + and has poles at the points 
s = -2a-2j and s = -1-2j, (j= 0, 1, . .), while the function [Z&,‘(s)]-1 has no other 
singularities in the region D - apart from the poles at the points s = -201+ 2 + 2j (j = 0, 1, . . .). Let 
us introduce the functions 

Aj+ = Res {--~_h’+l [K,+ (s)]-’ 0,’ (s)} 
s=aa+z+nj 

A,- = Res {--h-‘-l [K,,’ @)I-l K1 (s) Q2+ (s)) 
s=-za-2j 

Bj = Res {-h-*-l [K,,- (s)]-l K, (s) m2+ (s)} 
a=-I-aj 

(2.9) 

(2.10) 
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Taking into account formulas (2.5) we have, according to Abel-type theorems, @z-(s) = 0 (s -“), 
a*+(s) = O(S-‘+~), s--+ m when sED_, D+ respectively, in which case we obtain from (2.10) 
Aj+ = O(A%j1_2a) A.- = 0(A2ije2+2a ), Bi = 0(X2jj-2+2a 

), j+w. Therefore the series (2.9) 
converge uniforml; i,’ the corresponding regions Do’ = c\U_Mji (j = 0, 1, . . a), Dl- = C\ULjf 
(j = 0, 1, . . .) where C is the plane of the complex variable, Mj’ = {s E C: ) s + 2a + 2j T 1 - 1 1 < E} , 
Lj+ = {s E C: ) s + 1 + 2j I< E}, E is a positive number as small as desired. Thus the function ‘PO’(s) is 
analytic in Do+ and the function *c-(s), ‘PI-(s) is analytic in Do-, DIP (we note that Do’ 3 D *, 
D1-ID-). 

Subtracting from the left- and right-hand sides of the first equation of (2.8) the sum 
yla-(s) + *r-(s), and of the second equation the function *a+(s), amounts to removal of the poles 
and thus enables us to use the principle of continuity and Liouville’s theorem. The formulas 
determining the solution of the Riemann problem (2.6) have the form 

q- (s) = c + ‘yo+ (4 
Ko_ (s) 

ml+ (s) = yo- (s) + Y1- (s) 
KQ+ (4 

+ KI (8) [C + ‘yo+ (~11 
k*+'K,- (s) 

@a- (s) = XS’A-tJ- (s) [Yo- (s) + Y; (s)], ma+ (s) = l!&+(s) [C + Yo+ (s)] (2.11) 

where C is an arbitrary constant. The unknown coefficients Aj *, Bj are found from conditions 
(2.10). Substituting formulas (2.11) (2.7) and (2.9) into (2.10), we arrive at the following infinite, 
normal-type algebraic system: 

R n* = ianG (I- 2 2 tn + ;&, + 3 ) 
f=O 

6 On- = 2x+x_rs (n + 2 - a) (nx*xo%!~)-l 

for the new variables A,&, B,,connected with the old variables as follows: A,’ = C&* , B, = CB,, . 
We will solve system (2.12) by the asymptotic method. We will seek the coefficients A&, B,, in 

the form of 

OD 

A;;* = Aan-it2a i a;jhai,. A+,* = hanto 2 =zjhai 

B n* = Aan 2 b&a’ 

Substituting the expansions (2.13) into system (2.12) 
relations: 

j=o 
(2.13) 

we obtain the following recurrence 
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%o - = &A b,, = tjln+ 

(2.14) 
(n = 0, 1, . . .; k = 1, 2, . , . ) 

I , 

As in [53, we can invert the recurrence relations (2.14) and obtain explicit formulas for the 
coefficients ank’, bnk . However, formulas (2.14) are more suitable for numerical calculations. 

Let us now find the constant C and the position of the point b. Taking into account the condition 
of equilibrium of the stamp (2.4) and (2.5) we obtain @r-(O) = (2~)~‘P, and this yields, finally, by 
virtue of (2.11), 

co 

cz p (j+JG 
A$* -1 

2a r (a) 2(a - 1 - f) ) 
Just as in Sec. 1, we introduce the quantity 

K (b) =,~b_(b - r)‘)‘-ax* (r) 

Taking into account (2.5) and remembering that it follows from (2.11) that 

we obtain K(b) = C(x,T(a))-‘(b/2)‘-“~. Therefore the value of b can be obtained from the 
equation X = 0. 

We will construct computational formulas for the contact stresses. Taking into account relations 
(2.3), (2.5) and (2.11) and using an inverse Mellin transformation, we obtain 

k(r) =-& s c + ‘yo+ (8) ( > _r_ 
Ko‘(s) a 

-J-f &, 

J% o*) = & s Yom (0) + Yl-(8) r 

.Ko* (4 c f T 
-e--1 ds 

Using the theory of residues and the first equation of (2.12), we obtain 

x- 
ue(t,O) = -- 

“7 ) Bj r (S/r + I - a) r 21 
w@ j* f (1-b ‘/d ( ) b (O.<r<b) 

Consider the case when b < r < a. We have 

If max {b, 2-“za} sr<a, then we should use the following transformation formula [6] to 
calculate Gauss’ function appearing in the last equation: 
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Function AZ(r) is given by the relation 

and when Z1% S Y < u, we have 

From (2.1) it follows that for b< r<a the shear stresses ~,+((r, 0) can be expressed in terms of the 
normal stresses og (T? 0): 7;e (P, 0) = - pq+ fr, 0). 

It remains to discuss the case of 0 < r f li. We have 

3. THE NON-SYMMETRIC CONTACT PROBLEM WITH FRICTION AND ADHESION 

Let us consider the interaction between the elastic h~f-plane (O<r< ~0, --n<: 8~0) and the 
stamp (O<r<a, 8 = O), to which are apptied the vertical force F, the moment M and the horizontal 
force T (Fig. 2). The region of contact is split into the adhesion and friction zones. The boundary 
conditicms of the problem are: 
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IP 

FIG. 2. 

8 = -3C: Ug = T,e = 0, 0 < P < 00 

6 = 0: uo = 6, + yr, 0 < r < a; u, = &, bl < r < bz 

%I - pw = 0, 0 < r < b,; a,8 + plots = 0, b, < r < a 

z,e = Us = 0, a < r < 00 

I%e I<PfW 1, bl < r < b,; m > 0, 0 < r < a 

(3.1) 

where y is the angie of rotation of the stamp. The equilibrium of the stamp is ensured by the 
conditions 

a 

S*fj(r,O)dr=P, jr,e(r,O)dr=*, 
0. 

fc~(r,O)rdr=M (3.2) 
0 0 ; 

We choose the following unknown functions: 

x1 (rj‘ = (are - PUe)e=o, x2 (r) = (r,s + wh=0 

91 0”) = v* -Vu,/dr (r, 0), & (r) = v,-lih&ar (r, 0) (3.3) 

and we have, by virtue of (3.1), suppxrC[b,,a], suppxzCIO,bz], suppJIIf[O,bI]U[bz, co), 
~upp$~C[O, m) when O~rda JIz(r) = v*-‘y). Writing 

II Xi82 *j* II = 5 II Xi 0% 7clj (r) II r’dr 
it 

we arrive, just as in Sets 1 and 2, at the relations 

2P%o = 61 (s) Xl‘ + I,, (s) X283 2t42r = 111 (4 XL? + 42 (4 Xas 

(3.4) 

ir$ (S) = -pX_ + (-I)’ X+ Ctg 3X, l,j (S) = (-2)’ X_ + PC+ Ctg nS 

(1 = 1, 2) 

Let us introduce the parameters 

h, = b,la, R, = b,la, 0 < h, < As < 1 

and the functions 
1 h;l 

@r- (s) = 
s 

x1 (er) r* dr, (D1+ (s): = 1 x1 (b, r) r* dr 
I 1 

f#$- (s) = j g;(b.g) rw dr, tDb,+ (s) = 2p 7 *% (ar) rS dr 
0 i 

(3.5) 
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Then, taking into account the fact that CDt-(s) = hrs+l @t’(s) and using (3.4), we arrive at the 
Riemann vector problem 

@I+ (s) -21 h;+V?,,- (s) 

a;’ (4 = 41 (s)@1- (s) + %?112 (s) @2- (81 - (s + j)-‘c, 

fD*+ ($1 = A;” 121 (d @I- (4 + h2 ew2- (4 - @lhziZ)d+1Q)8- (4 

s E I?, c, = 2p (1 + v)-“Ey (3.6) 

We will obtain from the third equation of (3.6) first an expression for the function @t-(s) and 
then for 9Dz-(.Y), and substitute them into the second equation, taking the first equation into 
account. As a result we obtain, instead of (3.6), the following system of functional equations: 

co (8 + 1j-l + a2+ (4 = 41 (s) @,- ($1 + %+%2 (4 @2- (8) 

(J%+ (s) - &‘-llll-l (s) EL1 (s) 102’ (s) + c, (s + i)-‘l = 
= E (s) &l-l (s) CDz- (s) - (?ql&$+xI?Pg- (s) 

-@b, (s) = 2 (s) Zl2--’ (s)@,’ (s) + (~~~~+l~~+ (s) - ~~8-1~~~-l(s) x 

x 122 (4 m2* (s) + co (8 + 1)-'I, I(s) = -4 (x-2 + x,2 ctgZ ns) 

Let us factorize 1rr, fll -l&112-‘1: 

211 (4 = L*+ (s) L, (s), &j-l (s) 2 (s) = Lj+ (s) L, (s) (i = 1, 2) 

L,’ (s) = r (I+ 8) r (a+ 8) 
r P/a + tfJ + 8) r p/r -q + 0) 

L,+ (s) = x1 r (- 8) r (a - 8) 

r (lb - if3 ‘- s) r (lh, + ifi - S) * 
r(i+8)r(i--a++) 

LC W= r (l!z + ifi + s) r (ljil - tfj + r) 

x1 = Zpx~,-~, x0 = x, cosec na 

The quantities IX, p are given in (1.5). Just as in Sec. 2, we introduce the functions 

Y,+(s) = 2 r_*A$+a_-I 9. Y,-(s) = 9 A’- ’ 
f-0 

j’ s+a+f 

yY,+ (s) = 2 +$ *. 
ho 

Y,-(s) = 2 $q 
l--o 

s2m =m+2~+~/2,82m+~=m-~~+~/2(m=0,1,...) 

The coefficients Ai*, Bj’ are to be determined. Let us rewrite system (3.7) in the form 

(3.7) 

(3.8) 

(3.9) 
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(C, , C, are arbitrary constants). In order to satisfy Liouville’s theorem used here, it is necessary and 
sufficient that the coefficients 

are the solution of the following infinite, normal-type algebraic system: 

/f-k = h’f+n-l$) "ko _dkl + 

n+a-1 

Bzk = (#+’ $‘$ snys, 

) 

(3.11) 

n = 0, 1, . . .; k = 0, 1, 2 

r,(l) = x_ sin na (p2 + 1) (nxIn! a)-lF (V2 + Z + n) r (1/z + 2 + n) 

r,(l) = -sin 2na (nr~!~)-~ I? (V2 - ? + n) I? (s/2 - 2 + n), 2 = cc + ifi 

r&@ = x1- 1&&- (szm), rzim (*I = -(sz,JIR,,,Ll+ (-szm) 

R, = (-I)” r (-m - 2if3) [ml I’ (-szm) I’ (1 - a - s~,,,)]-~, 

(k) 
b+l = 5, 0 (k = 3, 4) 

(6,, is the Kronecker delta). We find the solution of the Riemann problem (3.6) from (3.9) 

Q2 (s) = -ClJ~l (s + 1)-l + G + u’; (s) + y2+ 6) (3.12) 

Next we determine the angle of rotation y and the constants Ci and Cz . Taking into account the 
notation (3.3) and (3.9, we can write the conditions of equilibrium of the stamp (3.2) in the form 
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M&2- (0) - al- (0) = 2l.&P, A$&- (0) + (or- (0) = 2/z-lT 

A$&- (1) - o,- (1) = 2p@M (3.13) 

Taking into account formulas (3.12) and (3.8) and writing 

co& = Bfk 
m - 8J 

a, = n [I’ (cc) chnl31 -I, dr = rr (b” + ‘1,) [I’ (a + 1) ch r$]-l 

we obtain the following system of three equations for determining the constants Cc, Ci , C, from 
conditions (3.13): 

a 

aJkc,=fJ (j=“,1,.2); f,=+$, fl=2$, fa=&$ (3.14) 

alk = 2bd06,1 (--y&c, + &2 + ak(r + ok(,) - (-i)‘r (a) x 
x bO6kO + 6kl + @kO+) (j = 0, 1) 

&k = -r (a + 1) (‘/2%,&X, + 6kl + aXI+) (k = 0, 1, 2) 

The angle of rotation y is connected with C, by the relation (3.6). 
In order to find the unknown points bi, b2 at which the boundary conditions change, we 

introduce, as in Sets 1 and 2, the stress intensity factors 

Kl = lim (r - bl)14x1 (r), Kz = lim (b2 - +-ax2 (t) 
+++o r-r&d 

(3.15) 

On the one hand we have, by virtue of (3.12), as s-+ CQ 

@I+ (8) - Go* (-8)-a (8 E D+), 0, (s) - CsF (s E D-) 

o* = B,- + B1’ + . . . 

while on the other we have, from (3.5) and (3.15), as s+ ~0 

(-IQ+ (s) - &ba-lr (a) (--~)-a (a E D+), as- (s) - K&-T ta) ~a 
(s E D-) 

(3.16) 

and we find 

K, = bFa hr (~4)i-b,, zc2 = b:-a [r (a)~-l~2 

The parameters hi, A2 are found from the conditions K, = 0, K2 = 0, which are obviously 
equivalent to the relations C, = 0, o, = 0. Taking into account (3.16) and (3.10), we reduce the 
linear system of three equations (3.14) for Co, Cl, C, to the system of two transcendental equations 
for X1, A2 

fo bjoFl - do) = (%OF1 - aOIFO) fJ (j = 19 2) 

F, = i&k- + &k- + . . . (k = 0, 1) 
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Here the angle of rotation is given by the equation 

y = (1 + Y) fll [2pE (aoo - F,'Qzo*)l-' 

and the equilibrium of the stamp is ensured. 
Let us now investigate the problem of singularities in contact stresses and displacements in the 

neighbourhood of the singularities. Since Ki = K2 = 0, the functions r,.@, uO, du,ldr, du,lar are 
bounded when 8 = 0 and r--t br , r-+ b2. In the neighbourhood of the point r = a we have 

oa (F, 0) = 0 {(U - F)-}, T,.g (F, 0) = 0 {(a - r)*}, F--t U - 0 

he/aF (F, 0) = 0 {(F - ap}, aU,/dF (F, 0) = o (I), F+ u f-0 

The study of the behaviour of the stresses of r+O produces non-trivial results. We have, by virtue 
of (3.5) and (3.12), 

(3.17) 

The function [L,-(s)]-l has, in the region D+, poles at the points s = -s, [s,, are complex 
numbers defined in (3.8)]. However, by virtue of (3.12) and the fourth relation of (3.11), we have 

Res {ra, (s) - (A&J)“+%- (s)W,- (s) @I+ (s))-ll [L,- (s)l-l} = 0 
s=-s n 

Applying the theory of residues and taking into account the last equation, we obtain from (3.17) 
and (3.3) 

Xs (F) = -yy,- (CC - ‘i) [r (201 - 1) L,+ (Cc - l)]-l(F/b,)-u + 

+ 0 (F14), r-h 0 

~0 (r, 0) = %XZ (r).), ~0 (r, 0) = (2p)% (r), 0 < r < bl 

Comparing (3.5) and (3.12), we obtain 

au, 
I 

1 r (a) Ys- (a - 1) (r/wa 
ar e=o=--2y r(--1;%+iB+u)r(--/a--il)+CC) +-o(l), r-,0 

In conclusion we note the possibility of a passage to the limit hijO (bij0) in formulas (3.12). In 
this case we have @r+(s) = 0, @s-(s) = 0, W2*(s) = 0. To obtain the coefficients A,’ we turn to the 
algebraic system 

(10 
A,,- = - h;l+Q+nr(nl) cr + 1 _?I n - 

c 
4+ 

l+n+i i 
j==o 

A 
n 

+ = ?,idLtnr(na) c, - cov1 2-a+n 
j=a 

Taking into account relation (3.12) (*\I* = 01, we obtain (Di are complex constants) 

xi (r) = Dir4a+is + Dir--‘l~-@ + 0 (r’/*), r e 0 (j = ;I, 2) 
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THE CONTACT PROBLEM OF THE DISCRETE FITTING OF 
AN INHOMOGENEOUS VISCOELASTIC AGEING CYLINDER 

WITH A SYSTEM OF RIGID COLLARS-f 

A. V. MANZHIROV and V. A. CHERNYSH 

Moscow 

(Received 11 March 1990) 

The axially symmetric contact problem of the interaction of an inhomogeneous ageing viscoelastic 

cylindrical body with an arbitrary finite system of fitted rigid elements is considered. Account is taken of the 

fact that the collars are not fitted or removed at the same time, which is dictated, for example, by the 

particular features of the installation of engineering structures, as well as the properties of the age and 

structural inhomogeneities of the deforming body itself due to manufacturing processes or the erection of 

real objects. A formulation of the problem and its system of resolvent bidimensional integral equations are 

given. A solution of the system is constructed. A numerical analysis of a number of actual processes is 

carried out and the mechanisms of both the individual as well as the combined effect of the main factors on 

the characteristics of the contact interaction are investigated. 

1. FORMULATION AND RESOLVENT EQUATIONS OF THE CONTACT PROBLEM 

LET us investigate the process of the sequential fitting of rigid collars to a bilayer hollow cylinder, 
the layers of which are made out of different viscoelastic ageing materials at different instants of 

tPrikl. Mat. Mekh. Vol. 55, No. 6, pp. lOl&-1025, 1991. 


